

drive with us

K-CK-CCK Fluid Couplings

DESCRIPTION	pag.	2
PERFORMANCE CURVES		3
STARTING TORQUE CHARATERISTICS		4
ADVANTAGES		5
STANDARD OR REVERSE MOUNTING		6
PRODUCTION PROGRAM		7 ÷ 8
SPECIAL VERSION (ATEX)		8
SELECTION	9	9 ÷ 12
DIMENSIONS (IN LINE VERSION)	1:	3 ÷ 23
CENTER OF GRAVITY AND MOMENT OF INERTIA		24
DIMENSIONS (PULLEY VERSIONS)	2	5 ÷ 26
SAFETY DEVICES	2	7 ÷ 29
OTHER TRANSFLUID PRODUCTS		30
SALES NETWORK		

DESCRIPTION & OPERATING CONDITIONS

1. DESCRIPTION

The TRANSFLUID coupling (K series) is a constant fill type, comprising of three main elements:

- 1 driving impeller (pump) mounted on the input shaft.
- 2 driven impeller (turbine) mounted on the output shaft.
- 3 cover, flanged to the outer impeller, with an oil-tight seal.

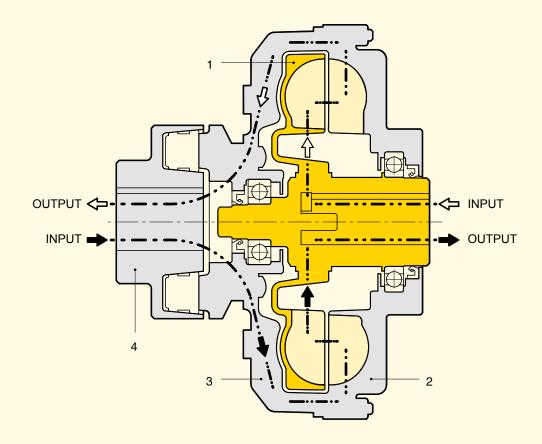
The first two elements can work both as pump or turbine.

2. OPERATING CONDITIONS

The TRANSFLUID coupling is a hydrodynamic transmission. The impellers perform like a centrifugal pump and a hydraulic turbine. With an input drive to the pump (e.g. electric motor or Diesel engine) kinetic energy is transferred to the oil in the coupling. The oil is forced, by centrifugal force, across the blades of the pump towards the outside of the coupling.

The turbine absorbs kinetic energy and generates a torque always equal to input torque, thus causing rotation of the output shaft. Since there are no mechanical connections, the wear is practically zero.

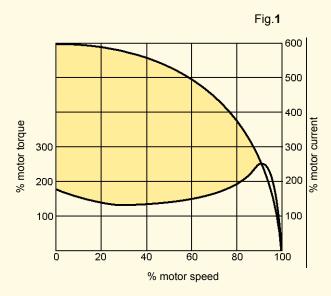
The efficiency is influenced only by the speed difference (slip) between pump and turbine.

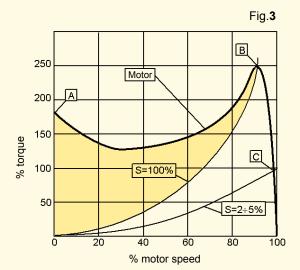

The slip is essential for the correct operation of the coupling - there could not be torque transmission without slip! The formula for slip, from which the power loss can be deduced is as follows:

Slip % =
$$\frac{\text{input speed - output speed}}{\text{input speed}} \times 100$$

In normal conditions (standard duty), slip can vary from 1,5% (large power applications) to 6% (small power applications).

TRANSFLUID couplings follow the laws of all centrifugal machines:


- 1 transmitted torque is proportional to the square of input speed;
- 2 transmitted power is proportional to the third power of input speed;
- 3 transmitted power is proportional to the fifth power of circuit outside diameter.


- 1 INNER IMPELLER
- 2 OUTER IMPELLER
- 3 COVER
- 4 FLEX COUPLING

2.1 Transfluid coupling fitted on electric motors

Three phase asynchronous squirrel cage motors are able to supply maximum torque only, near synchronous speed. Direct starting is the system utilized the most. Figure 1 illustrates the relationship between torque and current. It can be seen that the absorbed current is proportional to the torque only between 85% and 100% of the asynchronous speed.

Any drive system using a Transfluid fluid coupling has the advantage of the motor starting essentially without load. Figure 2 compares the current demands of an electric motor when the load is directly attached verses the demand when a fluid coupling is mounted between the motor and load. The coloured area shows the energy that is lost, as heat, during start-up when a fluid coupling is not used. A Transfluid fluid coupling reduces the motor's current peak during start-up and also reduces the current losses, increasing the lifetime of electric motors. Also at start-up, a fluid coupling allows more torque to pass to the load for acceleration than in drive systems without a fluid coupling.

With a motor connected directly to the load there are the following disadvantages:

- The difference between available torque and the torque required by the load is very low until the rotor has accelerated to between 80-85% of the synchronous speed.
- The absorbed current is high (up to 6 times the nominal current) throughout the starting phase causing overheating of the windings, overloads in the electrical lines and, in cases of frequent starts, major production costs.
- Over-dimensioned motors caused by the limitations indicated above.

To limit the absorbed current of the motor during the acceleration of the load, a ($\lambda\Delta$) (wye - delta) starting system is frequently used which reduces the absorbed current by about 1/3 during starting. Unfortunately, during operation of the motor under the delta configuration, the available torque is also reduced by 1/3; and for machines with high inertias to accelerate, overdimensioning of the motor is still required. Finally, this system does not eliminate current peaks originating from the insertion or the commutation of the device.

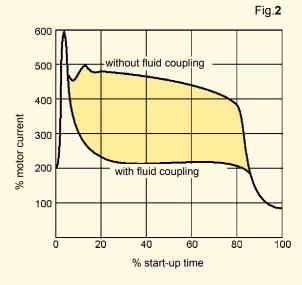
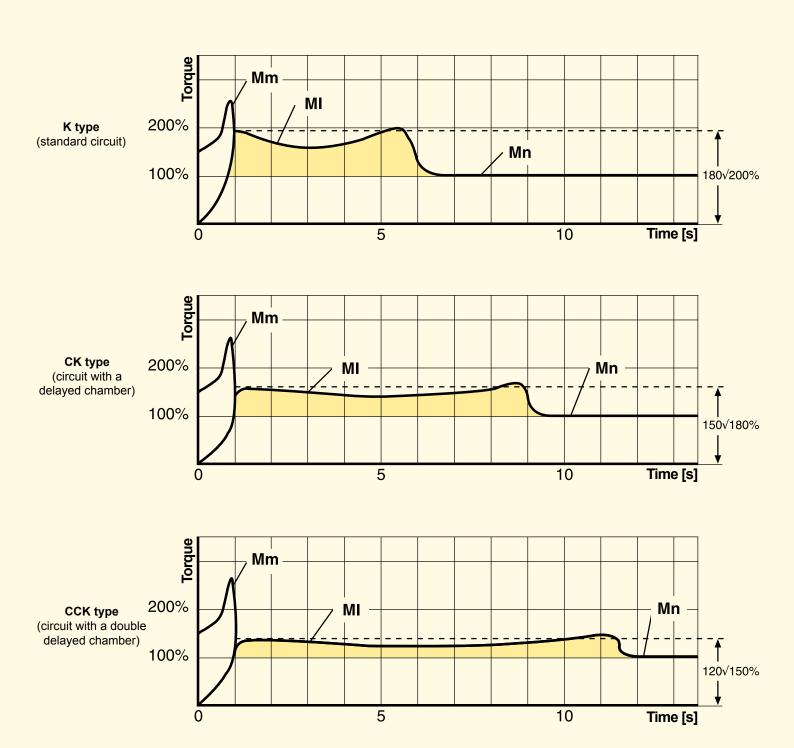


Figure 3 shows two curves for a single fluid coupling and a characteristic curve of an electric motor. It is obvious from the stall curve of the fluid coupling (s = 100%) and the available motor torque, how much torque is available to accelerate the rotor of the motor (colored area). In about 1 second, the rotor of the motor accelerates passing from point A to point B. The acceleration of the load, however, is made gradually by the fluid coupling, utilizing the motor in optimal conditions, along the part of the curve between point B, 100% and point C, 2-5%. Point C is the typical point of operation during normal running.



2.2 CHARACTERISTIC CURVES

MI : transmitted torque from fluid coupling
Mm : starting torque of the electric motor

Mn : nominal torque at full load

..... : accelerating torque

NOTE: Above starting times are indicative only

DELAYED FILL CHAMBER ADVANTAGES

3. TRANSFLUID FLUID COUPLINGS WITH A DELAYED FILL CHAMBER

A low starting torque is achieved, with the standard circuit in a maximum oil fill condition because fluid couplings limit to less than 200% of the nominal motor torque. It is possible to limit further the starting torque down to 160% of the nominal torque, by decreasing oil fill: this, contrarily creates slip and working temperature increase in the fluid coupling.

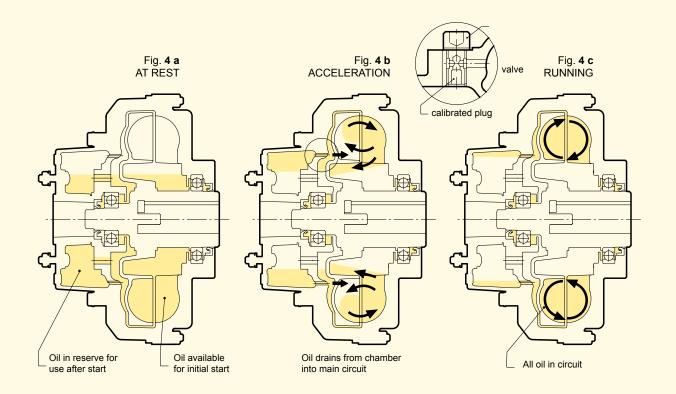
The most convenient technical solution is to use fluid couplings with a **delayed fill chamber**, connected to the main circuit by **calibrated bleed orifices. These externally adjustable** valves, available from size **15CK** (Fig. **4b**), can be simply adjusted to vary starting time.

In a standstill position, the **delayed fill chamber** contains part of the filling oil, thus reducing the effective quantity in the working circuit (Fig. **4a**) and a **torque reduction** is obtained, allowing the motor to quickly reach the steady running speed **as if started without load**.

During start-up, oil flows from the **delayed fill chamber** to the main circuit (Fig. **4b**) in a quantity proportional to the rotating speed.

As soon as the fluid coupling reaches the nominal speed, all oil flows into the main circuit (Fig. **4c**) and torque is transmitted with a **minimum slip**.

With a **simple delayed fill chamber**, the ratio between starting and nominal torque may reach **150** %. This ratio may be further reduced down to **120** % with a **double delayed fill chamber**, which contains a higher oil quantity, to be progressively transferred into the main circuit during the starting phase.

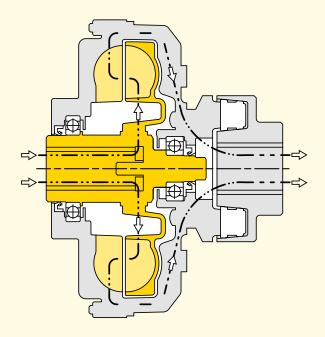

This is ideal for very smooth start-ups with low torque absorptions, as typically required for machinery with large inertia values and for belt conveyors.

The advantages of the **delayed fill chamber** become more and more evident when the power to be transmitted increases.

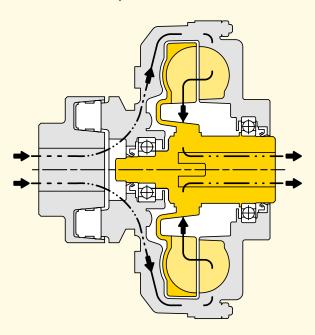
The **simple chamber** is available from size **11CK**, while the **double chamber** from size **15CCK**.

3.1 SUMMARY OF THE ADVANTAGES GIVEN BY FLUID COUPLINGS

- very smooth start-ups
- reduction of current absorptions during the starting phase: the motor starts with very low load
- protection of the motor and the driven machine from jams and overloads
- utilization of asynchronous squirrel cage motors instead of special motors with soft starter devices
- higher duration and operating convenience of the whole drive train, thanks to the protection function achieved by the fluid coupling
- higher energy saving, thanks to current peak reduction
- limited starting torque down to 120% in the versions with a double delayed fill chamber
- same torque at input and output: the motor can supply the maximum torque even when load is jammed
- torsional vibration absorption for internal combustion engines, thanks to the presence of a fluid as a power transmission element
- possibility to achieve a high number of start-ups, also with an inversion of the rotation direction
- load balancing in case of a double motor drive: fluid couplings automatically adjust load speed to the motors speed
- high efficiency
- minimum maintenance
- Viton rotating seals
- cast iron and steel material with anticorrosion treatment



4. INSTALLATION


4.1 STAMDARD MOUNTING

Driver inner impeller

4.2 REVERSE MOUNITNG

Driver outer impeller

Minimum possible inertia is added to the motor, and therefore free to accelerate more quickly.

During the starting phase, the outer impeller gradually reaches the steady running condition. For very long starting times, heat dissipation capacity is lower.

If a braking system is required, it is **convenient and easy to install** a **brake drum or disc** on the flex coupling.

In some cases, where the driven machine cannot be rotated by hand, **maintenance procedures of oil checking and refilling**, as well as alignment, **become more difficult**.

The delayed fill chamber, when present, is fitted on the driven side. The rotating speed of the said chamber gradually increases during start-up, thus **leading to a longer starting time**, assuming the bleed orifices diameters are not changed. **If oil quantity is excessively reduced**, the transmissible torque may be lower than the starting torque of the driven machine. In such a case, part of the oil remains inside the delayed chamber. This lack of oil in the fluid coupling may cause stalling.

The "switching pin" device might not work correctly on machines where, owing to irregular operating conditions, the driven side may suddenly stop or jam during the starting phase.

Flex coupling is protected by the placement of the fluid coupling before it, and therefore this **configuration** is **fit for** applications with **frequent start-ups or inversions** of the rotating sense.

Higher inertia directly connected to the motor.

The outer impeller, being directly connected to the motor, reaches synchronous speed instantly. **Ventilation** is therefore **maximum** from the beginning.

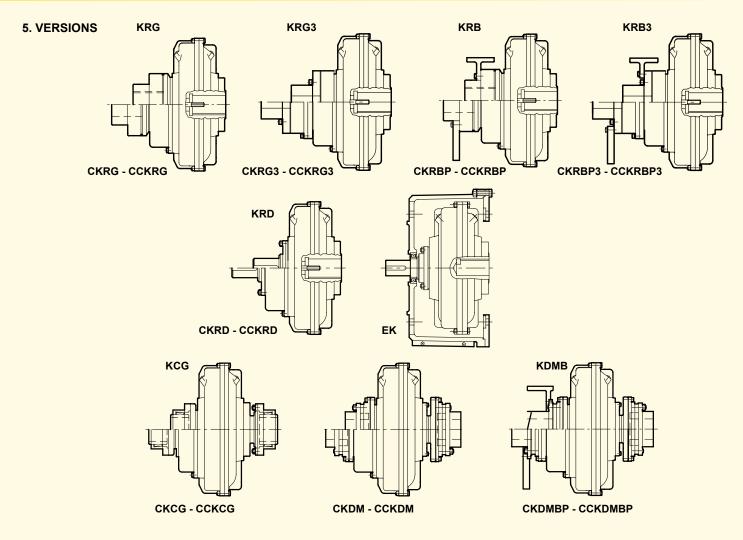
The **assembly of a brake disc or drum** on KR fluid couplings is **more difficult, expensive** and leads to a longer axial length of the whole machine group.

The outer impeller and cover are connected to the motor, it is therefore possible to manually rotate the coupling to check alignment and oil level, and for refilling.

The delayed fill chamber is fitted on the driver side, and reaches the synchronous speed in a few seconds.

Oil is therefore centrifuged into the main circuit gradually and completely.

Starting time is adjustable by replacing the calibrated bleed orifices. The starting phase, however is performed in a shorter time than in the configuration with an inner driver impeller.


The **switching pin operation is always assured**, where fitted, as the outer impeller, always rotates because it is mounted on the driver shaft.

In case of frequent start-ups or inversions of the rotating direction, the **flex coupling is much more stressed**.

If not expressely required by the customer or needed for the application being performed, the fluid coupling is supplied according to our "standard" mounting. Do specify in your request for quotation whether you need a "reverse" mounting.

NOTE: Starting from size 13K and 11CK included, a baffle ring is always fitted on the driver impeller, and therefore it is not ecommended to mount a fluid coupling "reverse" if "standard" mounting, or viceversa.

In these cases contact TRANSFLUID for more detailed information.

5.1 IN LINE

KRG-CKRG-CCKRG : coupling with elastic coupling.

: KRG version, with brake drum (...KRB) or disc (...KRBP). KRB-CKRB-CCKRB

KRD-CKRD-CCKRD : ..KR with output shaft. A flexible coupling has to be used; it is possible to place it

(with a convenient housing) between the motor and a hollow shaft gearbox.

: version with elastic coupling allowing removal of rubber elements without moving the machines. KRG3-CKRG3-CCKRG3

: coupling with clamp type, super elastic coupling. KRM-CKRM-CCKRM

: fluid coupling fitted with a bell housing, to be placed between a flanged electric motor and a hollow

ΕK shaft gearbox.

: fluid coupling with gear couplings, also available with brake drum (...KCGB) or disc (...KCGBP). : fluid cou-KCG-CKCG-CCKCG

KDM-CKDM-CCKDM pling with disc couplings, also available with brake drum (...KDMB) or disc (...KDMBP).

N.B.: The ..KCG - ..KDM versions allow a radial disassembly without moving the motor or the driven machine.

5.1 PULLEY

: basic coupling foreseen for a flanged KSD-CKSD-CCKSD

pulley, with simple (CK..) or double

(CCK..) delayed fill chamber.

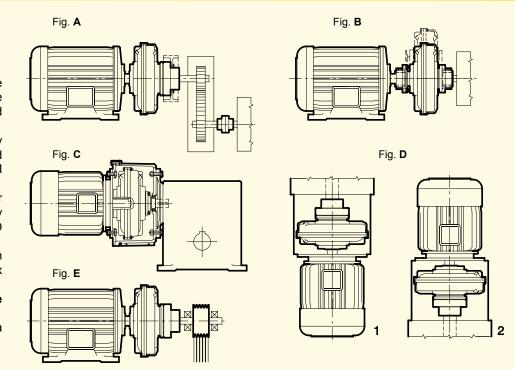
KSI-CKSI : fluid coupling with an incorporated

pulley, which is fitted from inside.

KSDF-CKSDF-CCKS...: KSD coupling with flanged pulley,

externally mounted and therefore to

be easily disassembled.



TRANSFLUID trasmissioni industriali

6 MOUNTING 6.1 IN LINE VERSIONS MOUNTING EXAMPLES

- Fig. A Horizontal axis between the motor and the driven machine (KRG-CKRG-CCKRG and similar).
- Fig. **B** It allows a radial disassembly without moving the motor and the driven machine (KCG-KDM and similar).
- Fig. **C** Between a flanged electric motor and a hollow shaft gearbox by means of a bell housing (..KRD and EK).
- Fig. D Vertical axis mounting between the electric motor and a gearbox or driven machine.

 In case of order, please
- Fig. **E** Between the motor and a upported pulley for high powers and heavy radial loads.

N.B. Version EK (fig. C) also for vertical mounting (fig. D 1-2)

6.2 PULLEY VERSIONS MOUNTING EXAMPLES

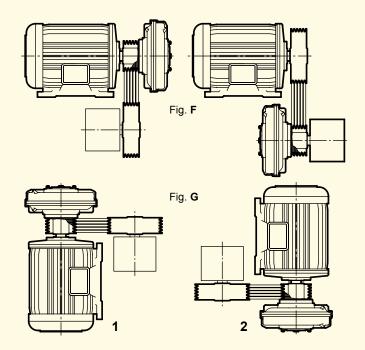
Fig. F Horizontal axis

Fig. G Vertical axis. When ordering, please specify mounting tupe 1 or 2.

7 SPECIAL VERSION 7.1 ATEX

It is possible to get the Transfluid fluid couplings with finished bores certified as equipment for intended use in hazardous zones according to directive 2014/34/UE (Atex).

The selection of suitable Atex fluid coupling must consider an additional safety factor of 1.2 times the absorbed power (for instance, motor 132 kW @ 1500 rpm-absorbed power 120 kW x 1.2 = 144 kW power to be considered in the selection).


According to different categories, there is the suitable selected fluid coupling as per below table.

Fluid coupling	Category 3 Atex Zone 2 or 22	Category 2 Atex Zone 1 or 21	Category 1 M2 industrial
model	Ex II 3 D or GT4	Ex II 2 D or GT4	Atex E x L M2
KRG	•	•	•
KCG	•	•	
KDM	•	•	•
KXG	•	•	
KXD	•	•	•
EK	•		
KBM	•	•	
KSD	•	• (water)	
Fluid fill	Oil or Treated water	Fire resistant oil Treated water	Treated water only

In case of inquiry for Atex fluid coupling, you have to apply Transfluid providing the application form TF 6413 duly filled up. About KXG and KXD couplings, please refer to catalogue 160 GB.

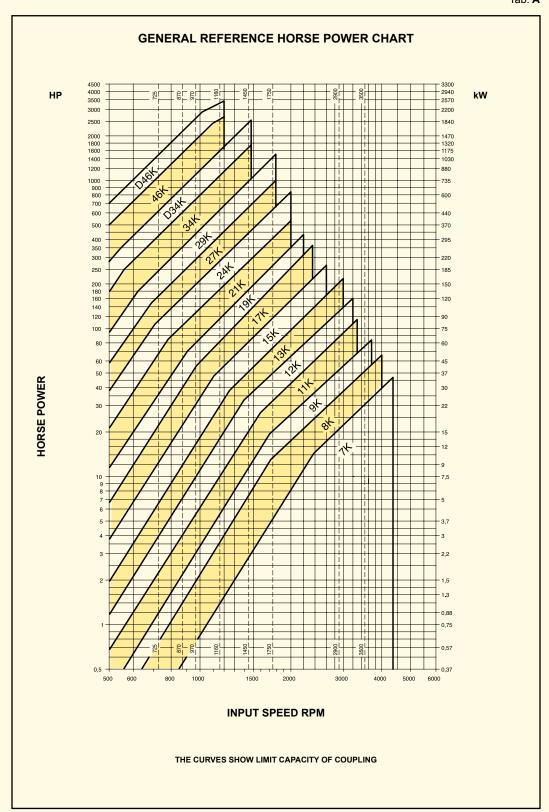
7.2 WATER FILL FLUID COUPLING

Transfluid has developed a version of water fill fluid coupling in order to meet the demands of environment friendly products as well as couplings suitable for working in hazardous zone and underground mines.

The water to be used is a mixture of water and glycole. The water fill couplings are available upon request on all design from size 13 upwards; they have the same overall dimensions of standard couplings series. A suffix "W" identifies the coupling suitable for treated water operation (e.g. 27 CKRGW)

7.3 LOW TEMPERATURE (below -20°C)

KDM - KCG - Special bearings

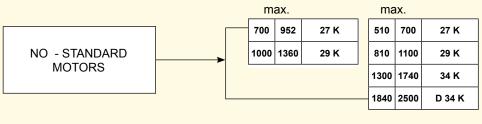

- Special seal fluid.

8 SELECTION

8.1 SELECTION CHART

The chart below may be used to select a unit size from the horsepower and input speed. If the selection point falls on a size limit line dividing one size from the other, it is advisable to select the larger size with a proportionally reduced oil fill.

Tab. A



8.2 SELECTION TABLE

Fluid coupling for standard electric motors.

Tab. B

МО	TOR			3000) rpm		(°) 18	00 rpm		150	0 rpm		(°) 12	00 rpm		100	0 rpm
TYPE	SHAFT DIA.	k	w	HP	COUPLING	k'	w	HP	COUPLING	kW	НР	COUPLING	kW	HP	COUPLING	kW	НР	COUPLING
80	19		.75 I.1	1.5			55 75	0.75 1		0.55 0.75	0.75		0.37 0.55	0.5 0.75		0.37 0.55	0.5 0.75	7 K
908	24		1.5	2			.1	1.5		1.1	1.5	7 K	0.75	1	7 K	0.75	1	
90L	24	2	2.2	3		1	.5	2	7 K	1.5	2		1.1	1.5		1.1	1.5	8 K
100L	28		3	4	7 K (1)		.2	3		2.2	3		1.5	2	8 K	1.5	2	9 K
112M	28		4	5.5			4	5.5		4	5.5	8 K	2.2	3		2.2	3	
132	38		5.5 7.5	7.5 10		5	.5	7.5	8 K	5.5	7.5		3	4	9 K	3	4	11 K
132M	38		7.5	10		7	.5	10		7.5	10	9 K	4 5.5	5.5 7.5	11 K	4 5.5	5.5 7.5	
160M	42		11 15	15 20		1	1	15	9 K	11	15		7.5	10		7.5	10	12 K
160L	42		8.5	25	9 K ₍₁₎	1	5	20	11 K	15	20	11 K	11	15	12 K	11	15	13 K
180M	48	2	22	30		18	3.5	25	12 K (11 K)	18.5	25		-	-	-	-	-	-
180L	48		-	-	-	2	2	30	12 K	22	30	12 K	15	20	13 K	15	20	
200L	55		30 37	40 50	11 K ₍₁₎	3	0	40	13 K (12 K)	30	40		18.5 22	25 30		18.5 22	25 30	15 K
225\$	60		-	-	-	3	7	50	(12.11)	37	50	13 K	-	-	15 K	-	-	-
225M	55(300) 60	4	45	60	11 K ₍₁₎	4	15	60	13 K	45	60	45.14	30	40	15 K	30	40	17 K
250M	60 (3000) 65	ę	55	75	13 K ₍₁₎	5	55	75	15 K	55	75	15 K	37	50		37	50	40 1/
280S	65 (3000) 75	7	75	100		7	'5	100	17 K (15 K)	75	100	17 K	45	60	17 K	45	60	19 K
280M	65 (3000) 75	9	90	125	13 K ₍₁₎	9	0	125	17 K	90	125	17 K	55	75		55	75	21 K
315S	65 (3000) 80	1	10	150		1	10	150	17 K	110	150	19 K	75	100	19 K	75	100	ZIK
315M	65 (3000) 80		32 60	180 220	-	10	32 60 00	180 220 270	19 K	132 160 200	180 220 270	21 K	90 110 132	125 150 180	21 K	90 110 132	125 150 180	24 K
355S	80 (3000) 100	2	200	270	-	20	60	340	21 K	250	340	24.16	160	220	24 K	160	220	27 K
355M	80 (3000) 100	2	:50	340	-	3	15	430	24 K	315	430	24 K	200 250	270 340	27 K	200 250	270 340	29 K

ma	ax.	
440	598	29 K
800	1088	34 K
1250	1700	D 34 K
2000	2700	46 K
2500	3400	D 46 K

370	500	29 K
600	800	34 K
880	1200	D 34 K
1470	2000	46 K
2000	2700	D 46 K

NB: THE FLUID COUPLING SIZE IS TIED TO THE MOTOR SHAFT DIMENSIONS

^(°) POWERS REFER TO MOTORS CONNECTED AT 440 V. 60 HZ

⁽¹⁾ SPECIAL VERSION, 24 HOURS SERVICE

⁽²⁾ ONLY FOR KRM

8.3 PERFORMANCE CALCULTIONS

For frequent starts or high inertia acceleration, it is necessary to first carry out the following calculations. For this purpose it is necessary to know:

D	!	KVV
	- input power	rpm
nm	- input speed	kW
P_{I}	- power absorbed by the load at rated speed	rpm
n_		kgm ²
J	- inertia of driven machine	°C.
Т	- ambient temperature	-

The preliminary selection will be made from the selection graph Tab. A depending upon input power and speed. Then check:

- A) acceleration time
- B) max allowable temperature
- C) max working cycles per hour

A) Acceleration time ta:

$$t_a = \frac{n_u \cdot J_r}{9.55 \cdot M_a}$$
 (sec) where:

n_u = coupling output speed (rpm)

J_r = inertia of driven machine feddered to coupling shaft (kgm²)

 M_a = acceleration torque (Nm)

$$n_{U} = n_{M} \cdot \left(\frac{100 - S}{100}\right)$$

where S is the percent slip derived from the characteristic curves of the coupling with respect to the absorbed torque M_I.

If S is not known accurately, the following assumptions may be made for initial calculations:

- 4 up to size 13"
- 3 from size 15" up to size 19"
- 2 for all larger sizes.

$$J_{\Gamma} = J \cdot \left(\frac{n_{L}}{n_{U}} \right)^{2}$$

Note:

$$J = \frac{PD^2}{4} \text{ or } \frac{GD^2}{4}$$

$$\label{eq:mass} \begin{split} \text{M}_{a} &= 1.65 \text{ M}_{m} \text{ - M}_{L} \\ \text{where: } \text{M}_{m} &= \frac{9550 \cdot \text{P}_{m}}{\text{N}_{m}} \end{split} \qquad \text{(Nominal Torque)}$$

$$M_{L} = \frac{9550 \cdot P_{L}}{N_{U}}$$
 (Absorbed Torque)

B) Max allowable temperature.

For simplicity of calculation, ignore the heat dissipated during acceleration.

Coupling temperature rise during start-up is given by:

$$T_a = \frac{Q}{C}$$
 (°C)

where: Q = heat generated during acceleration (kcal)

C = total thermal capacity (metal and oil) of coupling selected from Tab. C (kcal/°C).

$$Q = \frac{n_U}{10^4} \cdot \left(\frac{J_{\Gamma} \cdot n_U}{76.5} + \frac{M_L \cdot t_a}{8}\right) \text{ (kcal)}$$

The final coupling temperature reached at the end of the acceleration cycle will be:

$$T_f = T + T_a + T_I$$
 (°C)

where: $T_f = final temperature (°C)$

T = ambient temperature (°C)

 T_a = temperature rise during acceleration (°C) T_L = temperature during steady running (°C)

$$T_L = 2.4 \cdot \frac{P_L \cdot S}{K} \quad (^{\circ}C)$$

where: K = factor from Tab. D

Tf = must not exceed 150°C

C) Max working cycles per hour H

In addition to the heat generated in the coupling by slip during steady running, heat is also generated (as calculated above) during the acceleration period. To allow time for this heat to be dissipated, one must not exceed the max allowable number of acceleration cycles per hour.

$$H \max = \frac{3600}{t_a + t_1}$$

where t_I = minimum working time

$$t_L = 10^3 \cdot \frac{Q}{\left(\frac{t_a}{2} + T_L\right) \cdot K}$$
 (sec)

8.4 CALCULATION EXAMPLE

Pm = 20 kWnm = 1450 giri/min Assuming: $n_I = 700 \frac{\text{giri/min}}{\text{min}}$ PL = 12 kW $J = 350 \text{ kgm}^2$

= 25 °C

Trasmission via belts.

From selection graph. on Tab. A, selected size is 12K.

A) Acceleration time

From curve Tf 5078-X (supplied on request) slip S = 4%

$$n_u = 1450 \cdot \left(\frac{100 - 4}{100}\right) = 1392 \text{ rpm}$$

$$J_{\Gamma} = 350 \cdot \left(\frac{700}{1392}\right)^2 = 88.5 \text{ kgm}^2$$

$$M_{\rm m} = \frac{9550 \cdot 20}{1450} = 131 \, \rm Nm$$

$$M_L = \frac{9550 \cdot 12}{1392} = 82 \text{ Nm}$$

$$M_1 = 1,65 \cdot 131 - 82 = 134 \text{ Nm}$$

$$t_a = \frac{1392 \cdot 88.5}{9.55 \cdot 134} = 96 \text{ sec}$$

B) Max allowable temperature

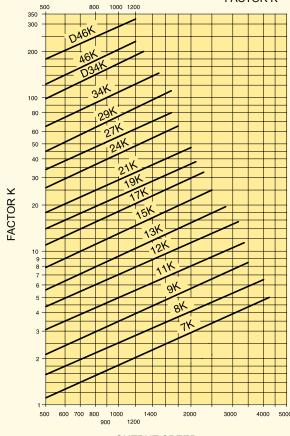
$$Q = \frac{1392}{10^4} \cdot \left(\frac{88.5 \cdot 1392}{76.5} + \frac{82 \cdot 96}{8} \right) = 361 \text{ kcal}$$

$$T_a = \frac{361}{42} = 86 \,^{\circ}\text{C}$$

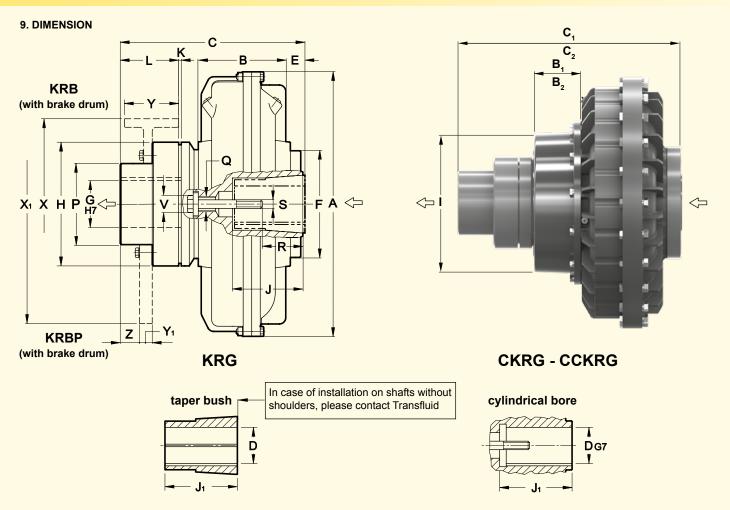
$$T_L = 2.4 \cdot \frac{12 \cdot 4}{8.9} = 13 \,^{\circ}\text{C}$$

$$T_f = 25 + 86 + 13 = 124 \, ^{\circ}C$$

C) Max working cycles per hour

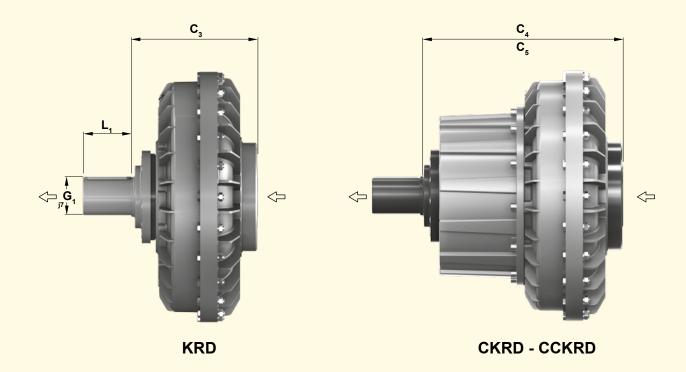

$$t_L = 10^3 \cdot \frac{361}{\left(\frac{86}{2} + 13\right) \cdot 8.9} = 724 \text{ sec}$$

H =
$$\frac{3600}{96 + 724}$$
 = 4 starts per hour


Tab. C THERMAL CAPACITY

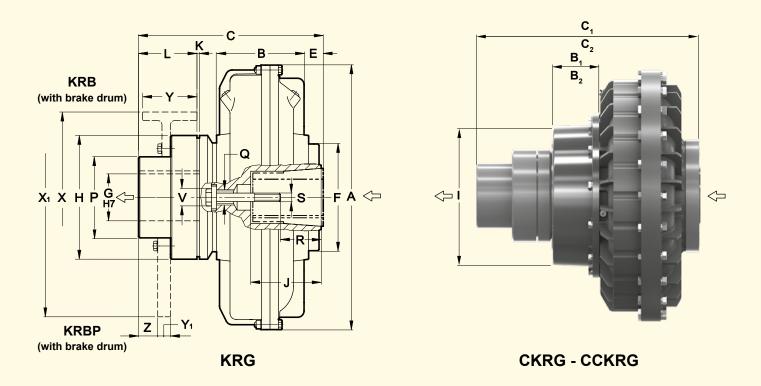
size	K kcal/°C	CK kcal/°C	CCK kcal/°C
7	1.2		
8	1.5	-	
9	2.5		
11	3.2	3.7	-
12	4.2	5	
13	6	6.8	
15	9	10	10.3
17	12.8	14.6	15.8
19	15.4	17.3	19.4
21	21.8	25.4	27.5
24	29	32	33.8
27	43	50	53.9
29	56	63	66.6
34	92	99	101
D34	138	-	-
46	-	-	175
D46	332	-	-

Tab. **D** FACTOR K


OUTPUT SPEED rpm

Size	Σ	\Rightarrow	Dime	ensic	ons																														
S ₩		C)	J	J	1	Α	B KR	B ₁ CKR	B ₂ CCKR	C KRG	C ₁	C ₂	Ε	F	G max	Н	I	K	L	Р	Q	R	S	٧	Z	Flex coupling	brake drum X - Y	brake drum X ₁ - Y ₁	(wit	eight k hout d CKRG	oil)	r KRG	Oil nax (I CKRG) CCKR
7		19	24		40	50	228	77			189			22									27 35	M6 M8						8.3			0.92		
		2	8	69	6	0	220	"			109			22	114	42	110			60	70	M12	40	M10	21		BT 10	160 - 60		0.3			0.92		
8	L	2	4	03	5	0	256	91	_		194	_		18	114	72	' ' '	_		00	10	10112	36	M8	["		D1 10	100 - 00		8.7			1.5		
		2	_		6	_		0.			10-1												41	M10						0.7			1.0		
9	-	28	38		60	80	295	96			246			31									43 54	M10 M12		_			on request	16			1.95		
_	-	-	48•••		80	110							_	Ŭ.	128				2				79	M16					on request			_			
11	\vdash	28	38	111	60	80	325	107	68.5			301		27		55	132	195			85	M20		M10 M12	27		BT 20	160 - 60		18	20.5		2.75	3.35	
		_	48•••		80	110					255		ļ							80			83	M16				200 - 75							
12	-	28	38		60	80	372	122				322		24	145									M10 M12						21.5	24.5		4.1	4.8	
	+	\dashv	48•••		80	110			75							_		224					83	M16	Ш										-
13	-	42	48	143	11	_	398	137			285	345		28	179	70					100		84	M16	-	5	BT 30		400 - 30 450 - 30		37		5.2	5.8	
	+	_	60•••		110 11												170						74 104 80 70	M20 M16 M20	34					-					
15	\vdash	48 60	55 65•••	145	14	_	460	151	87	137	343	411	461	35	206	80		259		110	120		100	M20	-	35	BT40	250 - 95 315 - 118	400 - 30 450 - 30	50.3	54.3	62	7.65	8.6	9.3
	-	48	55		11	_								H		\vdash								M16 M20	Н				122 00			\vdash			\vdash
17	\vdash	-	65•••	145	14	_	520	170						37					3			M27	103							77	83	92	11.7	13 6	14
.,	\vdash	75•	80•	_	\vdash	170		0															103 133	M20				315 110	445 20	1		"-		.5.0	
	-	48	55		11				96	176	362	442	522		225	90	250	337		110	135			M16 M20	34	15	BT 50	400 - 150	445 - 30 450 - 30						
19	_	-	65•••	145	14	_	565	190						17									103		1					83	90	99	14.2	16.5	18.
	\vdash	75•	80•	-	140	_		, ,														103 133	M20							-					

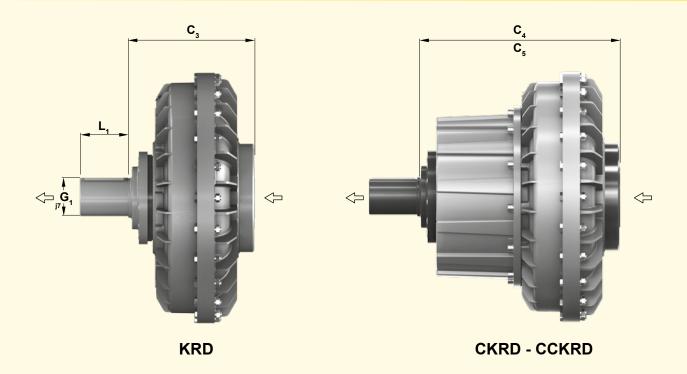
- D BORES RELATIVE TO TAPER BUSHES WITH A KEYWAY ACCORDING TO ISO 773 DIN 6885/1 PARTICULAR CASES:
- CYLINDRICAL BORE WITHOUT TAPER BUSH WITH A KEYWAY ISO 773 DIN 6885/1
- CYLINDRICAL BORE WITHOUT TAPER BUSH, WITH A REDUCED KEYWAY (DIN 6885/2)
- · TAPER BUSH WITHOUT KEYWAY
- FOR ...KRB KRBP SERIES SPECIFY X AND Y OR X1 AND Y1 DIAMETER EXAMPLE: 9KRB - D38 - BRAKE DRUM = 160x60



NB: The arrows indicate input and output in the standard versions.

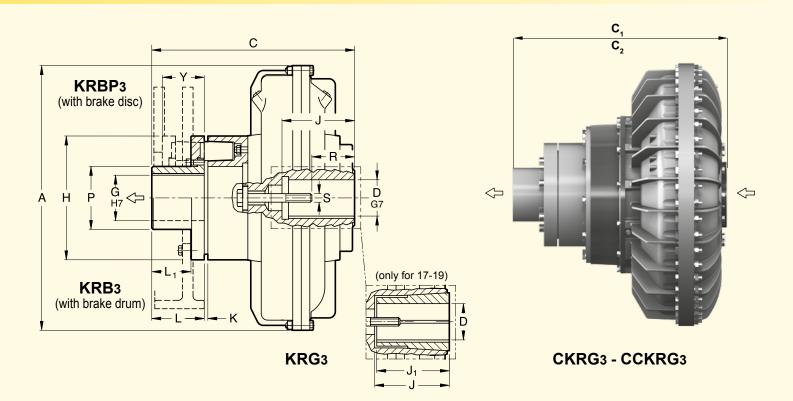
	$\Sigma \Rightarrow$	Dime	nsion	s				
⇔ Size			C ₅	G₁	L,	(wi	eight thout	_
7	138			28	40	5.7		
8	138	-		20	40	6.1	-	
9	176			38		11.6		
11	185	231	-	42	50	13	15.5	-
12	100	252		42		16.7	19.7	
13	212	272		48	60	26.3	29.3	
15	230	298	348	60	80	40.4	44.4	52.1
17	236	343	423	75	10	58.1	64.1	73.1
19	200	J#J	423	73	10	65.1	71.1	80.1

- WHEN ORDERING, SPECIFY: SIZE MODEL $\bf D$ DIAMETER UPON REQUEST: BORE $\bf G$ MACHINED; $\bf G$ 1 SPECIAL SHAFT
- G1 SHAFT WITH A KEYWAY ACCORDING TO ISO 773 DIN 6885/1



NB: The arrows indicate input and output in the standard versions.

a	Σ	\Rightarrow	Dime	nsio	ns																												
S.S.	1	ı	ס	J	A	B KR	B, CKR	B ₂	C KR	C ₁	C ₂	E	F	G	Н	ı	K	L	Р	Q	R	s	V	Z	Flex coupling	Brake drum X - Y	Brake disc X ₁ - Y ₁	(wit	eight hout CKRG	oil)		Oil nax I CKRG	
2	1	•80	90	170	620	205			433	533	623	45									130	M20 M24					560 - 30	129	139	147	19	23	31
	'	••	100	210	020	205	110	200	468	568	658	80	250	110	200	400	3 140 170 1		M36	165	M24	40	15	BT60	400 - 150	630 - 30	129	139	147	19	23		
2	4	•80	90	170	714	220	'''	200	433	533	623	21	230	110	0 290 400 3		٦	140	170	IVISO	130	M20 M24	40	45	БТОО	500 - 190	710 - 30	147	157	165	20.4	23	39
2	•	••	100	210	7 14	229			468	568	658	56									165	M24					795 - 30	147	157	105	20.4	23	39
2	7	120	max	210 max	780	278			484	602	702	6	315	120	354		4	150	200		167 (for	M24 max bore)	-	20	DTON	500 - 190	710 - 30	228	246	265	42	31.2	61
2	9	135	max	240 max	860	295	131	231	513	631	731	18	350	130	354	537	4	150	200	M45	167 (for	M24 max bore)	-	20	БТОО	300 - 190	795 - 30	281	299	309	55	50	73
3	4	150	max	265 max	1000	368			638	749	849	19	400	140	395		5	170	220		200 (for	M36 max bore)	-	18	ВТ90	630 - 236	1000 - 30	472	482	496	82.5	92.5	101

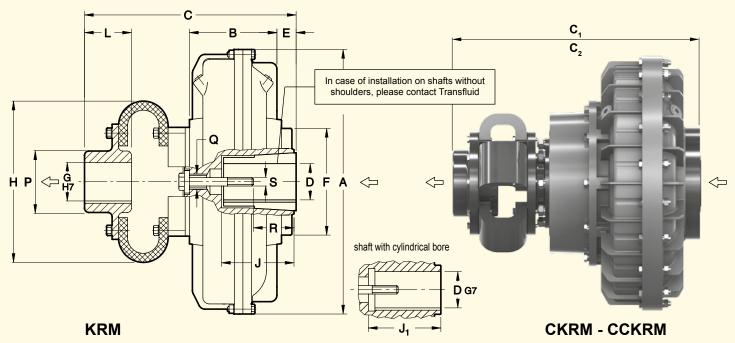

- $\,-\,$ D BORES WITH A KEYWAY ACCORDING TO ISO 773 DIN 6885/1
- STANDARD DIMENSIONS WITH A KEYWAY ISO 773 DIN 6885/1
- •• STANDARD DIMENSIONS WITH REDUCED KEYWAY (DIN 6885/2)
- WHEN ORDERING, SPECIFY: SIZE MODEL D DIAMETER FOR ...KRB OR ...KRBP, SPECIFY X AND Y OR X1 AND Y1 DIMENSIONS BRAKE DRUM OR DISC
- UPON REQUEST, G FINISHED BORE
 EXAMPLE: 19KRBP D80 BRAKE DISC 450 x 30

		∑⇒> D	imensio	ons					
	⇔ Size	C ₃	CKPD	C ₅	G,	L,		eight thout	
	Ŷ.	KKD	CKKD	CCKKD			KRD	CKRD	CCKRD
I	21	292	392	482			99.5	109.5	117.5
	21	327*	427*	517*	90	120	99.5	109.5	117.5
	24	292	392	482	30	120	117.5	127.5	135.5
	24	327*	427*	517*			117.5	127.5	155.5
	27	333	451	551	100	140	178	186	215
	29	362	480	580	100	140	231	249	259
	34	437	568	668	140	150	358	373	383

- Total lenght with D100 UPON REQUEST $\mathbf{G_1}$ SPECIAL SHAFT DIAMETER

The three pieces flexible coupling **B3T**, allows the removal of the elastic elements (rubber blocks), without removal of the electric motor; only with the ..**KRB3** (with brake drum) coupling the electric motor must be removed by the value of **'Y'**. **'Y'** = axial displacement male part of the coupling **B3T** necessary for the removal of the elastic elements.

∑⇒ Dimensions


Size	ı	D	J	J ₁	A	С	C ₁	C ₂	G	н	К	L	L,	Р	R	2	\$	3	Y	Elastic coupling	(w	Veight k vithout o CKRG3	
	48	55	145	110											80	0	M16	M20					
17	60	65•••	145	140	520										10)3	M	20			84	90	99
	75●	80●	-	140 - 170		440	400	F70	00	240		110	00	120	103	132	IVI.	20	00	DOT 50			
	48	55	445	110		418	498	578	90	240	3	110	82	130	80	0	M16	M20	82	B3T-50			
19	60	65•••	145		565										10	13	N 4-	20			91	97	106
	75●	80●	-	140 - 170											103	132	M:	20					

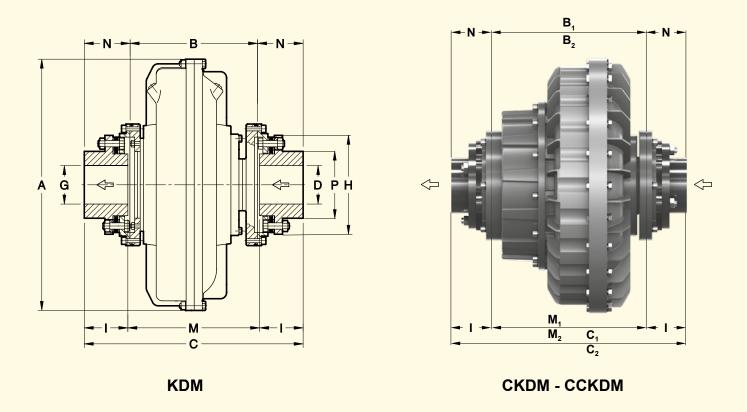
- D BORES RELEVANT TO TAPER BUSH WITH KEYWAY ACCORDING TO ISO773 DIN6885/1
- STANDARD CYLINDRICAL BORES WITHOUT TAPER BUSH WITH KEYWAY ACCORDING TO ISO773 DIN6885/1
- ••• TAPER BUSH WITHOUT KEYWAY

21	80•	90	170		620	457	557	647							130	M20	M24			134	144	152
21	100	••	210		020	492	592	682	110	290	3	140	78	150	165	M	24	82	B3T-60	134	144	152
24	80●	90	170		714	457	557	647	110	290	3	140	70	130	130	M20	M24	02	B31-00	152	162	170
24	100	••	210		714	492	592	682							165	M	24			132	102	170
27	120 r	max	210	-	780	566	684	784	130	354		150	112	180	167	M	24	120	B3T-80	247	265	284
29	135 r	max	240		860	595	713	813	130	354	4	150	112	160	for ma	x hole		120	B31-60	300	318	328
34	150 r	max	265		1000	704	815	915	150	395	5	170	119	205	200 for ma	M3 x hole	6	151	B3T-90	505	481	491
46	180 r	max	320	-	1330	-	-	1092	180	490	7	195	138	270	190 for ma	M3 x hole	6	122	B3T-100	-	-	1102

- D CYLINDRICAL BORES WITHOUT TAPER BUSH WITH KEYWAY ACCORDING TO ISO773 DIN6885/1
- STANDARD DIMENSIONS
- •• STANDARD DIMENSION WITH REDUCED HIGH KEYWAY (DIN 6885/2)
- ON ORDER FORM PLEASE SPECIFY: DIMENSION, MODEL, DIAMETER D EXAMPLE: 21CCKRG3 D80

NB: The arrows indicate input and output in the standard versions.

COUPLING ALLOWING HIGHER MISALIGNMENTS AND THE REPLACEMENT OF THE ELASTIC ELEMENTS WITHOUT MOVING THE MACHINES


		$\Sigma \Rightarrow$	Dimen	sions								TAPE	R BUS	H VEF	RSION	ı										
Ciro	0126	C)	J	J	J ₁	A	В	C	C ₁	C ₂	E	F	G	н	L	Р	Q	F	3	5		Elastic coupling	(wi	eight I thout	oil)
		28	38		60	80													43	54	M10	M12				
()	42•••	-		80	-	295	96	276	-		31							7	9	М	16		14.5	-	
_	_	28	38	444	60	80	205	407		224		07	128	50	405			1400	42	56	M10	M12	50.5	40.5	40	
1	1	42•••	48••	111	80	110	325	107	285	331		27		50	185	50	80	M20	8	3	М	16	53 F	16.5	19	
1	2	3	8		8	0	372	122	200	352	-	24	145						42	56	М	12		20	23	-
Ľ	_	42•••	48•••		80	110	312	122		332		24	143						8	3	М	16		20	23	
1	2	42	48	143	1.	10	398	137	332	392		28	177	65	228	72	105		8	4	IVI	10	55 F	33	36	
	•	55•••	60•••	170	110	58.5	000	107	002	002		20	'''		220	' -	100		74	104	M	20	331			
1	5	48	55	145	1	10	460	151	367	435	485	35	206	70	235	80	112		80	70	M16	M20	56 F	48	52	59.7
	_	60	65•••	- 10	14	40			007	100					200				10	00	M	20	00.			
		48	55	1/15	11	10												M27	8	0	M16	M20				
1	7	60	75• 80• - 140 170	40	520	170				37						IVIZI	10)3	M	20		67	73	82		
		75•				380	460	540		225	75	288	90	120		105	135	IVI		58 F						
		48	55	145	1	10		000	430	5-70		220	, 5	200	50	120		8	0	M16	M20	331				
1	9	60	65•••	1+3	14	40	565	190				17							10)3	M	20		74	80	89
		75•	80•	-	140													105	135	M	20					

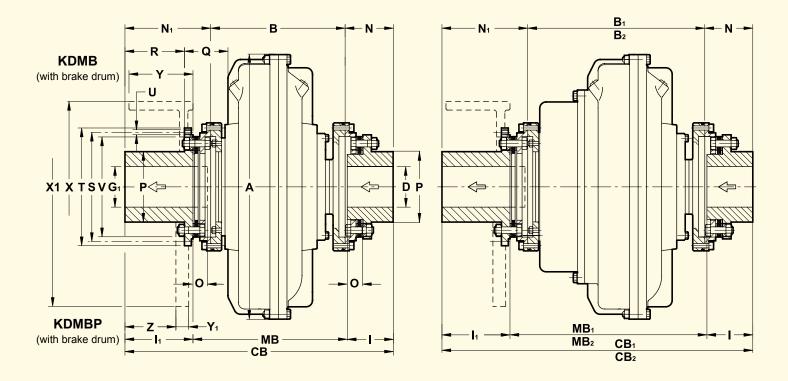
- D BORES RELEVANT TO TAPER BUSH WITH KEYWAY ACCORDING TO ISO773 DIN6885/1
- CYLINDRICAL BORES WITHOUT TAPER BUSH WITH KEYWAY ACCORDING TO ISO773 DIN6885/1 ••• CYLINDRICAL BORES WITHOUT TAPER BUSH WITH A REDUCED KEYWAY (DIN 6885/2)
- · TAPER BUSH WITHOUT KEYWAY

CYLINDRICAL BORE VERSION

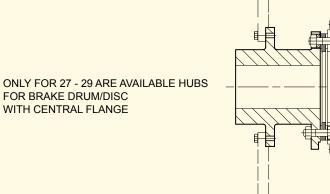
21	80•	90		170	620	205	496	596	686	45							130	M20	M24		124	134	142
21	10	0••		210	020	205	531	631	721	80	250	90	378	110	111	M36	165	М	24	65 F	124	134	142
24	80•	90		170	715	229	496	596	686	21	250	90	376	110	144	IVISO	130	M20	M24	05 F	142	152	160
24	10	0••		210	713	229	531	631	721	56							165	М	24		142	132	100
27	120	max	-	210	780	278	525	643	743	6	315	100	462	122	160		167 (for ma		24)	66 F	211	229	248
29	135	max		240	860	295	577	659	795	18	350	120	530	145	192	M45	167 (for ma		24)	68 F	293	311	321
34	150	max		265	1000	368	648	779	879	19	400	140	630	165	224		200 (for ma		36)	610 F	467	462	492

- D BORES WITH A KEYWAY ACCORDING TO ISO 773 DIN 6885/1
- STANDARD DIMENSIONS WITH A KEYWAY ISO 773 DIN 6885/1
- STANDARD DIMENSIONS WITH REDUCED KEYWAY (DIN 6885/2)
- WHEN ORDERING, SPECIFY: SIZE SERIE D DIAMETER EXAMPLE: 13 CKRM-D 55

FLUID COUPLING FITTED WITH HALF DISC COUPLINGS, WITHOUT MAINTENANCE AND PRSCRIBED FOR PARTICULAR AMBIENT CONDITIONS. TO BE RADIALLY DISASSEMBLED WITHOUT MOVING THE MACHINES.

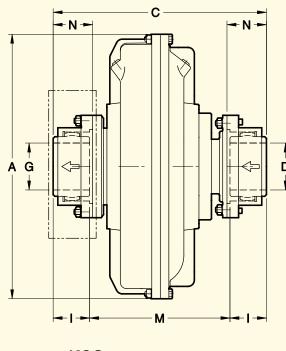

∑⇒ Dimensions

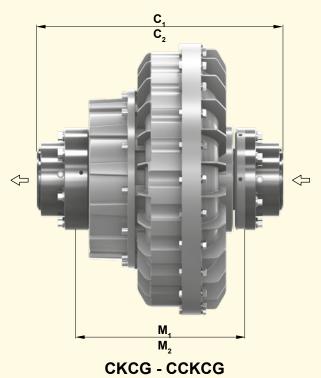
Size	A	B KDM	B ₁	B ₂	C KDM	C ₁	C ₂	D G min	D G max	Н	1	M KDM	M ₁	M ₂	N	Р	Disc coupling size		Weight k without o	
11	325	186	232		289	335		16	55	123	50	189	235		51.5	76	1055	22.5	25	
12	372	100	253	-	209	356	-	10	55	123	50	109	256	-	31.3	76	1055	26	29	-
13	398	216	276		339	399		21	65	147	60	219	279		61.5	88	1065	41.3	44.3	
15	460	246	314	364	391	459	509	21	75	166	70	251	319	369	72.5	104	1075	65	69	76.7
17	520	269	349	429	444	524	604	31	90	192	85	274	354	434	87.5	122	1085	89	95	104
19	565	209	349	429	444	324	004	31	90	192	83	2/4	334	434	67.3	122	1000	96	102	111
21	620	315	415	505	540	640	730	41	115	244	110	320	420	510	112.5	154	1110	159	169	177
24	714	313	415	505	340	040	730	41	113	244	110	320	420	310	112.5	154	1110	177	187	195
27		358	476	576	644	762	862	51	135	300	140	364	482	582	143	196	1140	289	307	326
29	29 860	387	505	605	673	791	891	JI	133	300	140	393	511	611	143	190	1140	342	360	370
34	1000	442	573	673	768	899	999	61	165	340	160	448	579	679	163	228	1160	556	562	572


- WHEN ODERING, SPECIFY: SIZE MODEL FIMISHED D-G BORES UPON REQUEST

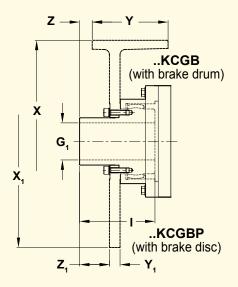
EXAMPLE: 27 CKDM

NB: The arrows indicate input and output in the standard versions.




	∑⇒ Dim	ensions			
⇔ Size	Brake drum X - Y	Brake disc X ₁ - Y ₁	(with	eight out oil, n and o	brake
12	200 - 75	on request	27	30	
13	200 - 75	on request	42.5	45.8	_
15	250 - 95	450 - 30	69.3	73.3	81
17	315 - 118	500 - 30	99	105	114
19	400 - 150	560 - 30	105	112	125
21	400 - 150	630 - 30	179	189	197
24	500 - 190	710 - 30	197	207	215
27	500 - 190	800 - 30	317	335	354
29	500 - 190	000 - 30	370	388	398
34	on request	800 - 30 1000 - 30	599	587	597

25	Dimensions
$\angle \nabla V$	Difficitions

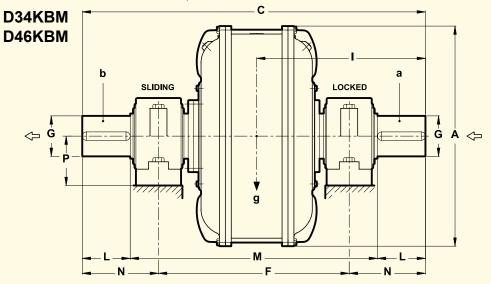

Size	A	B	B ₁	B ₂			CB ₂	D max	G ₁	1	I-		MB KD	MB ₁	MB ₂	N	N ₁	0	Р	Q	R	S ÷0.1	T f7	U Nr.		V	Z	Disc coupling size
12	372	186	253		336.5	403.5		55	60	50	8	0	206.5	273.5		51.5	99	17.5	76	67	69	128	142	8		114		1055
13	398	216	276	-	440.5	500.5	-	65	70	60	140	470	240.5	300.5	-	61.5	163	21.5	88	78	129	155	170		M8	140	-	1065
15	460	246	314	364	495.5	563.5	613.5	75	80	70	150	170	275.5	343.5	393.5	72.5	177	24.5	104	98	134	175	192			157	109	1075
17	520	200	349	420	E40 E	628.5	708.5	90	95	85		210	303.5	383.5	460 E	87.5	100	20.5	122	107	143	204	224		M10	185	118	1085
19	565	209	349	429	346.3	020.5	708.5	90	95	65	160	210	303.5	303.5	463.5	67.5	192	29.5	122	87	143	204	224			165	110	1000
21	620	315	415	505	620 E	728.5	010 5	115	120	110	100		358.5	458.5	548.5	110 5	201	38.5	154	133	137	256	276	12	M12	234	112	1110
24	714	313	415	505	020.5	120.5	010.5	113	120	110			336.3	400.0	346.3	112.5	201	36.3	134	109	137	250	270		IVI IZ	234	112	1110
27	780	358	476	576	731.5	849.5	949.5	135	145	140		240	411.5	529.5	629.5	140	220 5	47.5	196	107	155	315	338		M14	286	133	1140
29	860	387	505	605	760.5	878.5	978.5	135	145	140	180		440.5	558.5	658.5	143	230.5	47.5	196	109	155	315	336		W 14	200	133	1140
34	1000	442	573	673	845.5	976.5	1076.5	165	175	160			505.5	636.5	736.5	163	240.5	57.5	228	124	152	356	382		M16	325	130	1160

- WHEN ORDERING, SPECIFY: SIZE MODEL
- D AND G1 FINISHED BORES UPON REQUEST, AND SPECIAL I1 DIMENSION
- FOR BRAKE DRUM OR DISC, SPECIFY DIMENSIONS X AND Y OR X1 AND Y1 EXAMPLE: 17KDMB BRAKE DRUM 400 x 150

KCG

Brake drum or disc upon request

NB: The arrows <> indicate input and output in the standard versions.

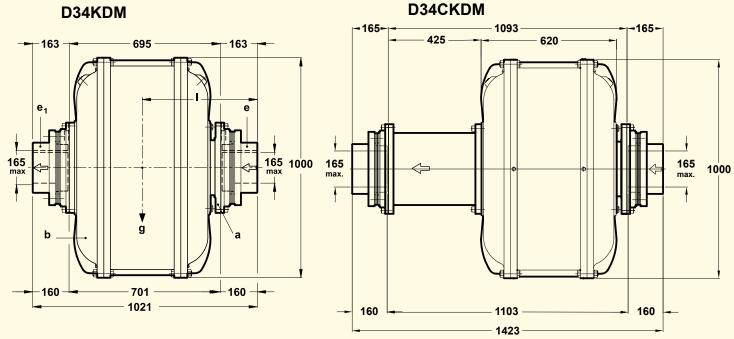

FLUID COUPLING FITTED WITH HALF GEAR COUPLINGS, TO BE RADIALLY DISASSEMBLED WITHOUT MOVING THE MACHINES

	$\Sigma \Rightarrow$	Dim	ensio	ns																
⇔ Size	A	C KCG	C ₁	C ₂	G	G ₁		l ₁	M KCG	М 1	M2	N	Brake drum X - Y	z	Brake drum X ₁ - Y ₁	Z ₁	Gear Couplig Size		eight hout	
7	228	229							143								1"	11.3		
8	256	234	-		50	-	43	80	148	-		44.5	•	•	•	•	E.I. (5) (6)	11.7	-	
9	295	290.6							190.6								(-7(-7	22.9		
11	325	299.6	345.6	-						245.6	-						1" ½	24.9	27.4	-
12	372	299.6	366.6	ĺ	65	45	50	114	199.6	266.6		50.8	250-95	45	400-30	32	E.I. (5) (6)	28.5	31.4	
13	398	325.1	385.6	1					225.1	285.1							. , , ,	37.6	40.6	
15	460	410	478	528					258	326	376						011/	76.6	80.6	88.3
17	520				95	65	76	146				79.5	250-95	57.5	400-30	44.5	2" ½ E.I.	91.1	97.1	106.1
19	565	434	514	594					282	362	442		315-118	21.5	445-30		(5) (6)	98.1	104.1	113.1
21	620												315-118	26	560-30	38	3"	142.3	152.3	160.3
24	714	503	603	693	111	90	90	165	323	423	513	93.5	400-150	15	710-30	38	E.I. (5) (6)	160.3	170.3	178.3
27	780	627	754	845	404	440	405	470	417	535	635	400.5	500 400		705.00		3" ½	253.2	272.2	291.2
29	860	656	774	874	134	110	105	170	446	564	664	109.5	500-190	6	795-30	30	E.I. (5) (6)	307.2	325.2	335.2
34	1000	750	881	981	160	120	120	190	510	641	741	123.5	•	•	800-30	42	4" E.I. (5) (6)	492.4	507.4	517.4
46	1330	-	-	1313.4	244	175	190	280	-	-	933.4	192.5	•	•	•	•	6" E.I. (5) (6)	-	-	1333

- UPON REQUEST
- (5) E.I. = EXPOSED INCH SCREWS
- (6) GEAR COUPLING WITH SPECIAL CALIBRATED BOLTS
- WHEN ORDERING, SPECIFY: SIZE MODEL EXAMPLE: 21CKCG

FLUID COUPLING WITH DOUBLE CIRCUIT, FITTED WITH MAIN JOURNALS AND INPUT AND OUTPUT SHAFTS

SERIES	A	С	F	D-G m6	L	М	N	Р
D34KBM	1000	1400	855	140	140	1120	257.5	170
D46KBM	1330	1900	1275	160	200	1550	312.5	170

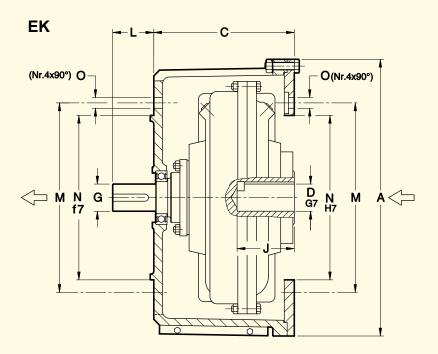

WEIGHT Kg (Without oil)	OIL max. I	CENTER 0 g Kg	F GRAVITY I mm	MOMENT (J (WR2 a	OF INERTIA 2) Kgm² b
810	162	952	710	26.19	64.25
2200	390	2514	955	91.25	183.7

KEYWAYS ACCORDING TO ISO 773 - DIN 6885/1

FLUID COUPLINGS FITTED WITH DOUBLE CIRCUIT, TO BE RADIALLY DISASSEMBLED WITHOUT MOVING THE MACHINES.

WITH HALF DISC COUPLINGS, WITHOUT MAINTENANCE

WITH HALF DISC COUPLINGS



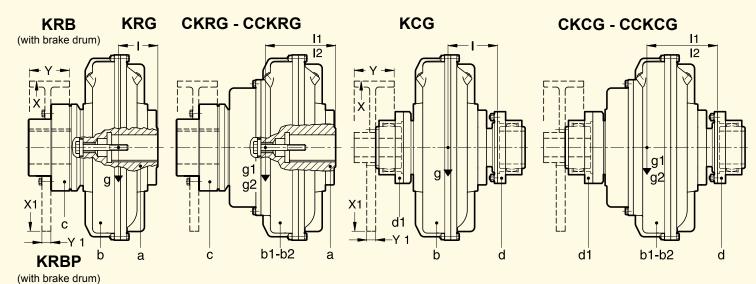
NB: The arrows <□ indicate input and output in the standard versions.

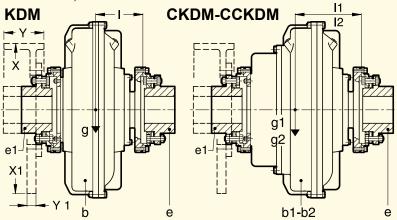
g.	∑≒> Dime	nsions						
Size	WEIGHT Kg (without oil)	_	CENTER O g kg	F GRAVITY I mm			OF INE 2) Kgm c	
D34KDM	880	162	1022	512	26.08	65.53	0.955	0.955
D34CKDI	1014	194.5	194.5	532	26.08	67.99	0.955	0.955

Also available D46KCG. For information please apply Transfluid

- g = TOTAL WEIGHT INCLUDING OIL (MAX FILL)
- a = INTERNAL ELEMENT
- b = EXTERNAL ELEMENT
- d = HALF FLEXIBLE COUPLING (INTERNAL ELEMENT)
- d₁ = HALF FLEXIBLE COUPLING (EXTERNAL ELEMENT)

Example for application




NB: The arrows <- indicate input and output in the standard versions.

e e	∑;> □	Dimens	sions										
Size	D	J	G	L	Α	С	М	N	0	Weight kg	OIL	Electric	motors
Ţ		,			,)		.,	_	(without oil)	max I	TYPE	kW 1500 rpm
7	• 24	52	24	38	269	132	165	130	11	11.4	0.92	90S - 90L **90LL	1.1 -1.5 1.6
8	• 28	62	28 h7	44	299	142	215	180	13	12.2	1.5	100 L 112 M	2.2 -3 4
9	• 38	82	38	57	399	187	265	230	13	26.9	1.95	132S - 132M ** 132L	5.5 - 7.5 9.2
11	• 42	112	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		399	187	300	250	17	28.3	2.75	160M -160 L	11 - 15
12	•• 48	112	48 j7	65	485	214	300	250	17	66	4.1	180 M 180 L	18.5 22
13	• 55	112	55	80	400	Z14	350	300	17	76	5.2	200 L	30

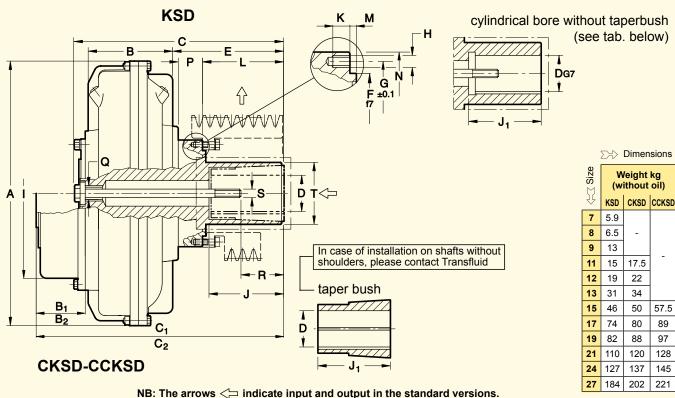
- CYLINDRICAL BORE WITH A KEYWAY ISO 773 DIN 6885/1
- •• CYLINDRICAL BORE WITH A REDUCED KEYWAY (DIN 6885/2)
- ** NOT STANDARD
 WHEN ORDERING SPECIFY: SIZE MODEL DIAMETER D and G
 EXAMPLE: 8 EK-D28 G 28

	Size		MOME	NT O	F INI	ΞR	TIA	
		With b					brake	
	Ŋ	X - Y	kgm²	Weight kg	X, -	Y,	kgm²	Weight kg
	13-15	250 -95	0.143	11.9	400		0.587	27
	13-15	315 -118	0.379	20.1	450		0.944	34.9
		315 -118	0.378	19.8	450		0.941	34.2
	17-19				500		1.438	43
		400 -150	1.156	37.5	560		2.266	54.7
ı		400 - 150	4 004	39.9	560		2.255	52.7
	21-24	400 - 150	1.201	39.9	630		3.623	68.1
	21-24	500 - 190	2 022	64.1	710	-	5.856	88
		500 - 190	3.033	04.1	795		9.217	111.6
ĺ					710		5.840	86
	27-29	500 - 190	3.022	62.8	795		9.200	109.6
					800		9.434	111.1
	34	24 000 000		122.6	800		9.418	109.6
	34	630 - 236	10.026	132.0	1000		23.070	176.2

∑⇒ Dimensions

7	Dimensions
/ ~/	

Size		CENTER OF GRAVITY																
	KF	KRG CKRG CCKRG			RG	K	G	CK	CG	CCK	CG	K	M	CK	DM	CCK	DM	
Ä	g Kg	l mm	g₁ Kg	I ₁ mm	g₂ Kg	I ₂ mm	g Kg	l mm	g₁ Kg	I ₁ mm	g₂ Kg	I ₂ mm	g Kg	l mm	g₁ Kg	I ₁ mm	g₂ Kg	I ₂ mm
7	9.1	92					12.1	70										
8	10	93	-	-			13	73	-	-			_		-	-		
9	17.7	134					24.6	86					22.2	81				
11	20.4	136	23.4	151]	-	27.3	93	30.2	107] -	-	24.9	85	27.9	98	-	-
12	25.1	142	28.7	154			32.1	98	35.6	113			29.6	92	33.2	104		
13	38.5	157	42	176			42.2	104	45.7	115			45.8	101	49.3	109		
15	57	174	61.8	195	70.2	216	77.3	124	82.1	135	90.4	147	71.7	121.5	76.6	130	85.7	145
17	87.2	205	94.8	225	106.5	238	85.3	138	103.1	152	126.6	185	99.2	135	106.9	145	118.3	163
19	96.4	201	104.4	221	116	227	104.6		112.6	132	136	182	106.4		116.4	143	127.4	161
21	145.6	233	159	265	169.3	288	151.2	157	164.5	174	200.2	211	175.6	156	189	168	201	182
24	172	227	184	255	195.3	280	177.2	137	190.2	170	225.2	201	202	130	214.3	166	226	178
27	265	262	290	298	313	312	276.2	185	304.2	210	361.2	248	326	164	351	174	378	195
29	329	277	354	305	368	321	344.2	198	359.2	218	415.2	251	383	176	411	188	432	200
34	521	333	549	364	580	376	548.9	235	571.9	253	582.9	282	628	209	636	214	650	222
36			-		1294	485					1524	368	-					


g g1 g2 = TOTAL WEIGHT, INCLUDING OIL (MAX FILL)

- * For **KSD** (without pulley) = a + b
- * For **CKSD** (without pulley) = a + b1
- * For **CCKSD** (without pulley) = a + b2

	k		MENT C	F INEF		-	K	DM
а	b	b ₁	b ₂	С	d	d ₁	е	e ₁
0.006	0.019			0.004	0.004	0.004		
0.012	0.034			0.004	0.004	0.004	-	,
0.020	0.068	-						
0.039	0.109		_	0.011	0.017	0.016	0.014	0.014
0.072	0.189	0.217			0.017	0.010		
0.122	0.307	0.359		0.032			0.032	0.036
0.236	0.591	0.601	0.887	0.082	0.091	0.102	0.063	0.064
0.465	1.025	1.281	1.372	0.192	0.091	0.102	0.121	0.125
0.770	1.533	1.788	1.879	0.192	0.091	0.102	0.121	0.123
1.244	2.407	2.997	3.181	0.370	0.145	0.375	0.210	0.373
2.546	4.646	5.236	5.420	0.370	0.143	0.373	0.210	0.373
3.278	7.353	9.410	10.37	1.350	0.500	0.436	0.934	0.887
4.750	11.070	13.126	13.754	1.330	0.300	0.430	0.834	0.007
11.950	27.299	29.356	29.983	3.185	0.798	1.649	1.565	2.773
52.2			106.6	6.68	4.35	7.14		

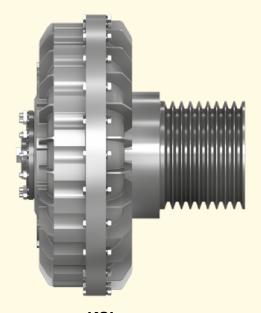
- b = EXTERNAL ELEMENT + COVER = INTERNAL ELEMENT b2 = b + DOUBLE DELAY CHAMBER

a = INTERNAL ELEMENT D = EXTERNAL ELEMENT b1 = b + DELAY CHAMBER b2 = b + DOUBLE DELAY (c FLEXIBLE COUPLING de = HALF FLEXIBLE COUPLING (INTERNAL ELEMENT) d1 e1 = HALF FLEXIBLE COUPLING (EXTERNAL ELEMENT) EXAMPLE: J..CCKCG = a+d (INT. ELEM.) b2+d1 (EXT. ELEM.)

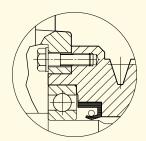
۱B:	The	arrows	\Diamond	indicate	input	and	output	in the	standard	versions.
-----	-----	--------	------------	----------	-------	-----	--------	--------	----------	-----------

	Dimensions TAPER BUSH VERSION																											
Size)	J	J	1	Α	В	B ₁	B ₂	С	C ₁	C ₂	Е	F	G	ŀ	1	ı	K	L	М	N	Р	Q	R		s	Т
Ŋ							KSD	CKSD	CCKSD	max	CKSD	CCKSD				Nr.	ø											max
7	19	24		40	50	228	77			159			55							35					29 3	38	M6 M8	
	2	8	69	6	0	220	11			174			70	75	90	4	M6		8	50	3	114	14	M12	43		M10	50
8	2	4	09	5	0	256	91	_		194			81	13	90	7	IVIO	_		65	5		17	IVITZ	33		M8	
	2	8		6	0					104			01												43		M10	
9	28	38		60	80	295	96			250			116													31	M10 M12	2
	•••	42	111	8	0				_			_		96	114					85	5	128	20		78		M16	69
11	28	38		60	80	325	107	73.5		259	289.5		113			8		195						M20		59	M10 M12	2
	•••			8	_												M8		13						78		M16	+
12	38	42	113	80	110	372	122			274	327		125	112	130					98	7	145	22			83	M12 M16	80
	•••			11				80										224							83	_	M16	
13	42	48	144	11	-	398	137			367	407		190	135	155					158	6	177	29		76		M16	88
		•••60		110	\vdash																					06	M20	+
15	48	55	145	11		460	151	92	142	390	438	488	195	150	178			264	17	159		206	28		100	70	M16 M20	100
	60	•••65		14																					69	_	IVIZU	
47	48	55	145	11		500	470						245			12							60	M27	99	\dashv		
17	60	•••65		140		520	170						245				M10				7		00			39		
	•75	•80 55	-	140	l			101	181	455	516	596		180	200			337	17	180		225			69	29	M20	132
19	48 60	•••65	145	14		565	190						225										45		99	_		
19	•75	•80			170	505	190						225										70			39		
	•/5	•80	-	140	170											L			L						99 1	วย		\perp

- D BORES RELATIVE TO TAPER BUSHES WITH A KEYWAY ACCORDING TO ISO 773 DIN 6885/1 PARTICUALR CASES:
- CYLINDRICAL BORE WITHOUT TAPER BUSH ISO 773 DIN 6885/1
- TAPER BUSH WITHOUT A KEYWAY

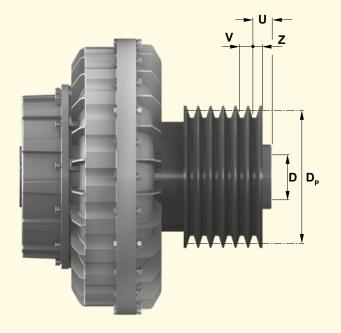

CYLINDRICAL BORE VERSION

21	•80		170	620	205			505	580	670	260							190			57		135	M20	
21	•100		210	620	205	115	205	545	620	710	300	200	228		M14	400	23	230	7	250	57	M36	165	M24	145
24	•80	-	170	714	229	1115	205	505	580	670	236	200	220	°	IVI 14	400	23	190	1	250	M36	IVISO	135	M20	145
24	•100		210	/ 14	229			545	620	710	276							230			IVISO		165	M24	
27	120 max		210	780	278	138									CONS	SULT O	UR EN	IGINEE	RS						

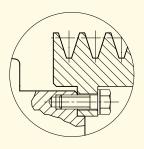

- STANDARD CYLINDRICAL BORES WITH KEYWAYS ACCORDING TO ISO 773 DIN 6885/1
- WHEN ORDERING SPECIFY: SIZE MODEL D DIAMETER EXAMPLE: 12KSD - D 42

KSI - CKSI - CCKSI

...KSI



∑⇒ Dimensions


Size	D	U		ntegral pulley
Ä			Dp	N° type
			80	
	19 - 24	11.5	90	
7			100	2 - SPA/A
<i>'</i>			80	2 - SPA/A
	28	26.5	90	
			100	
8	19 - 24	26.5	90	3 - SPA/A
	28	20.5	100	3 - 3FA/A
9	28 - 38	10	112	5 - SPA/A
11	42	15	125	4 - SPB/B
12	38 - 42 48	12	140	5 - SPB/B

GROOVE	>	Z
SPZ/Z	12	8
SPA/A	15	10
SPB/B	19	12.5
SPC/C	25.5	17
D	37	24
3 V	10.3	8.7
5 V	17.5	12.7
8 V	28.6	19

KSDF - CKSDF - CCKSDF

...KSDF

 $\searrow \Rightarrow$ Dimensions

Size	D	U		langed pulley		
			Dp	N° type		
7	19 - 24	6	125			
'	28	21	125	2 - SPA/A		
8	19 - 24	36	125			
0	28	9	112	3 - SPA/A		
9	28 - 38	34	160	4 - SPB/B		
11	42	58	200	3 - SPB/B		
	38 - 42	50	180	4 - SPB/B		
12	36 - 42 48	51	200	3 - SPC/C		
		26	200	4 - SPC/C		
	42 - 48	12.5	180	6 - SPB/B		
13	55 - 60	50 49	250	6 - SPB/B 5 - SPC/C		
	48 - 55	12.5	200	6 - SPB/B		
15	48 - 55 60 - 65	17	250	5 - SPC/C		
	00 00	69	280	5 - SPB/B		
		72.5	280	6 - SPB/B		
17	67 - 75	85.5	310	6 - SPC/C		
19	80	72.5	315	6 - SPB/B		
		59	345	6 - SPC/C		
21 24	ι	Jpon :	reque	st		
27						

 WHEN ORDERING, SPECIFY: SIZE - MODEL - D DIAMETER - Dp - NUMBER AND TYPE OF GROOVES EXAMPLE: 13 CKSDF - D55 - PULLEY Dp. 250 - 5 SPC/C

10. FILLING

Transfluid hydraulic couplings are supplied without oil. Standard filling: X for K series, 2 for CK series, and 3 for CCK series. The quantities are indicated on page 13 and 15 of this catalog. Follow the procedure indicated on Installation and Maintenance manuals 150 GB and 155 GB delivered with each coupling. Suggested oil: ISO32 HM for normal operating temperatures. For temperatures down zero, ISO FD 10 (SAE 5W) and for temperatures lower than –20°C contact TRANSFLUID.

11. SAFETY DEVICES FUSIBLE PLUG

In case of overloads, or when slip reaches very high values, oil temperature increases excessively, damaging oil seals and conseguently allowing leakage.

To avoid damage when used in severe applications, it is advisable to fit a fusible plug. Fluid couplings are supplied with a fusible plug at 140°C (109°C, 120°C or 198°C upon request).

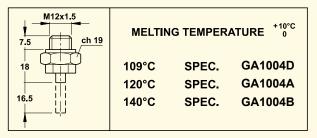
SWITCHING PIN

Oil venting from fusible plug may be avoided with the installation of a switching pin. When the temperature reaches the melting point of the fusible ring element, a pin releases that intercepts a relay cam that can be used for an alarm or stopping the main motor. As for the fusible plug, 2 different fusible rings are available (see page 27).

11.1 SWITCHING PIN DEVICE

This device includes a percussion fusible plug installed on the taper plug. The percussion fusible plug is made of a threaded plug and a pin hold by a fusible ring coming out due to the centrifugal force when the foreseen melting temperature is reached. Such increase of temperature can be due to overload, machinery blockage or insufficient oil filling. The pin, moving by approx. 16 mm, intercepts the cam of the switch to operate an alarm or motor trip signal.

After a possible intervention and removal of the producing reason, this device can be easily restored with the replacement of the percussion plug or even the fusible ring following the specific instructions included in the instruction manual.


With external wheel as driver, as indicated in Fig. 5, the percussion plug operates in any condition, while in case of driven external wheel it can operate correctly only in case of increase of the slip due to overload or excessive absorption.

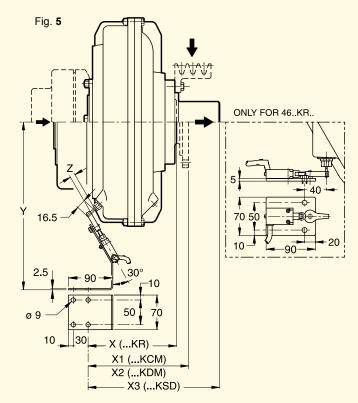
It is possible to install this system on all fluid couplings starting from size 13K even in case it has not been included as initial supply, asking for a kit including percussion fusible plug, gasket, modified taper plug, counterweight for balancing, glue, lever switch assembly installation instructions.

In order to increase the safety of the fluid coupling a standard fusible plug is always installed, set at a temperature greater than that of the percussion fusible plug.

For a correct operation, please refer to the instructions relevant to the standard or reverse installation described at page 6.

- Lever switch standard supply 230 Vac
- Upon request: Atex version
- Switching pin available: see below tab

ELECTRONIC OVERLOAD CONTROLLER


This device consists of a proximity sensors measuring the speed variation between the input and output of the fluid coupling and giving an alarm signal or stopping the motor in case the set threshold is overcome.

With such a device, as well as with the infrared temperature controller, no further maintenance or repair intervention is necessary after the overload occupance, because the machinery can operate normally, once the cause of the inconvenience has been removed (see page 28).

INFRARED TEMPERATURE CONTROLLER

To measure the operating temperature, a device fitted with an infrared sensor is available. After conveniently positioning it by the fluid coupling, it allows a very precise non-contact temperature measurement.

Temperature values are reported on a display that also allows the setting of 2 alarm thresholds, that can be used by the customer (see page 29).

DIM.	х	X ₁	X ₂	Х	g Ø	Υ	z								
7	115	128		148	24	262									
_ ′	113	120	-	163	28	202									
8	124	137		18	37	272	-								
9	143	166.5	156	22	28	287.5									
11•••	150	173.5	163	23	36	300.5									
12	157	183.5	173	25	58	323	15								
13	174	195.5	187	33	36	335	16								
15	197	220	214	35	57	358	16								
17	217	240	235	42	25	382	12								
19	209	232	227	41	17	400.5	9								
21	•257	282	277	•••∠	172	423	8								
24	•257	282	277	••••	172	460	4								
27	271.5	331	295			491	9								
29	296.5	356	322] -		-		-		-		-		524	8
34	346	404	369			584	4								

- For Dia. 100 + 35 mm
- •• For Dia. 100 + 40 mm
- ••• Only for K.. (CK.. upon request)
 REFERENCE DIMENSIONS

11.2 OVERLOAD CONTROLLER (Fig. 6)

When load torque increases, slip also increases and output speed consequently decreases.

The said speed variation can be measured by means of a sensor sending a pulse train to the speed controller. If the rotating speed goes lower than the set threshold (see diagram) on the controller, a signal is given through the intervention of the inner relay.

The device has a "TC" timer with a blind time before starting (1 - 120 s) avoiding the alarm intervention during the starting phase, and another "T" timer (1 - 30 s) preventing from undesired relay intervention during sudden changes of torque.

The device also provides a speed proportional analogic output signal (0 - 10 V), that can be forwarded to a display or a signal transducer (4 - 20 mA).

Standard supply is 230 V ac, other supplies are available upon request: 115 V ac, 24 V ac or 24 V dc, to be specified with the order.

Atex version is available too.

CONTROLLER PANEL (Fig. 7)

(TC) Blind time for starting

Set screw regulation up to 120 s

(DS) Speed range regulation

Programmable DIP-SWITCH (5 positions), selecting relay status, roximity type, reset system, acceleration or deceleration.

Programming speed Dip-Switch with 8 positions allows to choose the most suitable speed range, according to the application being performed.

(SV) Speed level (set point)

Set screw regulation with digits from 0 to 10. The value 10 corresponds to full range set with Dip-Switch.

R Reset

Local manual reset is possible through R button, or remote reset by connecting a N.O. contact at pins 2-13.

SS) Threshold overtaking

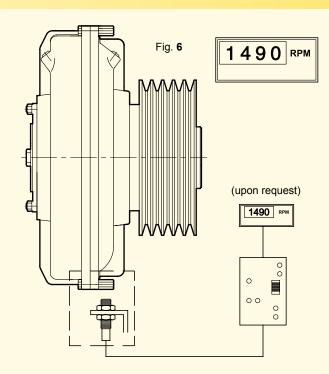
(RED LED) It lights up every time that the set threshold (set point) is overtaken.

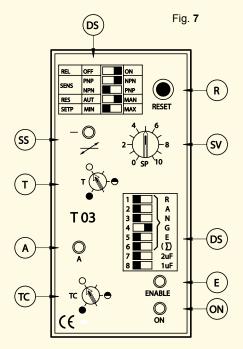
A Alarm led

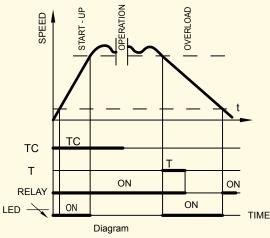
(RED LED) It lights up when alarm is ON and the inner relay is closed.

(E) Enable

(YELLOW LED) It lights up when the device is enabled.


T Delay time


Set screw regulation up to 30 s.


(ON) Supply

(GREEN LED) It shows that the device is electrically supplied.

FOR FURTHER DETAILS, ASK FOR TF 5800-A.

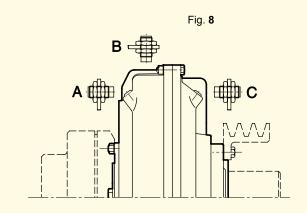
SAFETY DEVICES OPERATION

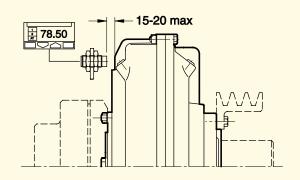
11.3 INFRARED TEMPERATURE CONTROLLER

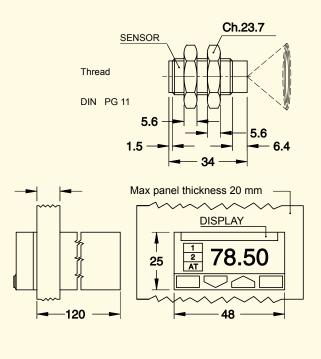
This is a non contact system used to check fluid coupling temperature. It is reliable and easily mounted.

It has 2 adjustable thresholds with one logical alarm and one relay alarm.

The proximity sensor must be positioned near the fluid coupling outer impeller or cover, according to one of the layouts shown in Fig. 8.


It is advised to place it in the **A** or **C** positions, as the air flow generated by the fluid coupling, during rotation, helps removal dirt particles that may lay on the sensor lens.


The distance between the sensor and the fluid coupling must be about 15-20 mm (cooling fins do not disturb the correct operation of the sensor).


To avoid that the bright surface of the fluid coupling reflects light, and thus compromises a correct temperature reading, it is necessary to paint the surface, directly facing the sensor with a flat black colour (a stripe of 6-7 cm is sufficient).

The sensor cable has a standard length of 90 cm. If required, a longer one may be used only if plaited and shielded as per type "K" thermocouples.

SENSOD									
SENSOR									
Temperature range	0 ÷ 200 °C								
Ambient temperature	- 18 ÷ 70 °C								
Accuracy	0.0001 °C								
Dimensions	32.5 x 20 mm								
Standard wire lenght •	0.9 m								
Body	ABS								
Protection	IP 65								
CONTR	ROLLER								
Power supply	85264 Vac / 4863 Hz								
Relay output OP1	No (2A - 250 V)								
Logical output OP2	Not insulated								
(5Vdc, ±10%, 30 mA max)									
AL1 alarm (display)	Logic (OP2)								
AL2 alarm (display)	Relay (OP1) (NO, 2A / 250Vac)								
Pins protection	IP 20								
Body protection	IP 30								
Display protection	IP 65								
Dimensions	1/32 DIN – 48x24x120 mm								
Weight	100 gr								

• TO BE MADE LONGER WITH TWISTED AND SHIELDED WIRES FOR TYPE K THERMOCOUPLES (NOT SUPPLIED)

FLUID COUPLING KSL SERIES

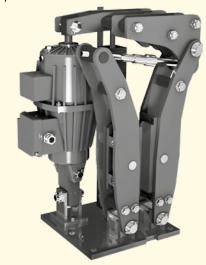
Start up and variable speed drive up to 4000 kW

FLEXIBLE COUPLING BM-B3M SERIES

Up to 33100 Nm

PNEUMATIC CLUTCH TP SERIES

Up to 16800 Nm


FLUID COUPLING KPT SERIES

Start up and variable speed drive up to 1700 kW

DISC & DRUM BRAKE NBG/TFDS SERIES

Up to 19000 Nm

ELECTRIC MACHINES
PERMANENT MAGNETS
SYNCHRONOUS AC

Up to 100 kW

EUROPE

AUSTRIA

ASC GMBH 4470 Enns

BELGIUM - LUXEMBURG

TRANSFLUID FRANCE s.a.r.l.

38110 Rochetoirin Ph. +33 9 75635310

Fax +33 4 26007959 tffrance@transfluid.it

CZECH REPUBLIC

TESPO ENGINEERING s.r.o.

602 00 Brno

DENMARK (Electric appl.)

JENS S. TRANSMISSIONER A/S

DK 2635 ISHØJ

MENGLAND & IRELAND

MARINE AND INDUSTRIAL TRANS. LTD.

Queenborough Kent me11 5ee

FINLAND (Electric appl.)

OY JENS S. AB 02271 Espoo

FINLAND (Diesel appl.)

TRANS-AUTO AB 151 48 Södertälje

FRANCE

TRANSFLUID FRANCE s.a.r.l.

38110 Rochetoirin Ph. +33 9 75635310

Fax +33 4 26007959 tffrance@transfluid.it

GERMANY - HOLLAND

TRANSFLUID GERMANY GmbH

D-48529 Nordhorn Ph. +49 5921 7288808 Fax +49 5921 7288809 tfgermany@transfluid.it

NORWAY (Diesel appl.)

KGK Norge AS

0664 Oslo

POLAND

SENOMA LTD

PL40-153 Katowice

PORTUGAL

REDVARIO LDA

2735-469 Cacem

RUSSIA - BELARUS - KAZAKHSTAN

TRANSFLUID 000

143100 Moscow

Ph. +7 495 7782042

Mob. +7 926 8167357 tfrussia@transfluid.it

SLOVENIA - BOSNIA - CROATIA

SERBIA

VIA INTERNATIONAL d.o.o.

1241 Kamnik

TECNOTRANS BONFIGLIOLI S.A.

08040 Barcelona

SWEDEN - ESTONIA - LATVIA

(Electric appl.)

JENS S. TRANSMISSIONER AB

SE-601-19 Norrkoping

SWEDEN (Diesel appl.)

TRANS-AUTO SE 151-48 Sodertaly

TURKEY

REMAS

81700 Tuzla Istanbul

AMERICA

ARGENTINA

ACOTEC S.A.

Villa Adelina - Buenos Aires

BRAZIL

SGI PTI

04461-050 Sao Paulo SP

CHILE

SCEM LTDA

Santiago Do Chile

COLUMBIA

A.G.P. REPRESENTACIONES LTDA

77158 Bogotà

PERU'

SCEM LTDA SUC. PERU

Lima 18

U.S.A. - CANADA - MEXICO

TRANSFLUID LLC

Auburn, GA30011 Ph. +1 770 822 1777

Fax +1 770 822 1774

tfusa@transfluid.it

AFRICA

ALGERIA - CAMEROUN - GUINEA

MAROCCO - MAURITANIA

SENEGAL - TUNISIA TRANSFLUID FRANCE s.a.r.l.

38110 Rochetoirin (France)

Ph. +33 9 75635310

Fax +33 4 26007959

tffrance@transfluid.it

EGYPT

INTERN.FOR TRADING & AGENCY (ITACO)

Nasr City (Cairo)

SOUTH AFRICA SUB SAHARAN COUNTRIES

BMG BEARING MAN GROUP

Johannesburg

OCEANIA

NEW ZELAND

HENLEY ENGINEERING Ltd Auckland

ASIA

S ASIA South East

ATRAN TRANSMISSION PTE LTD

Singapore 608 579

CHINA

TRANSFLUID BEIJING TRADE CO. LTD

101300 Beijing

Ph. +86 10 60442301-2

Fax +86 10 60442305

tbtcinfo@sina.com

INDIA

PROTOS ENGINEERING CO. PRIVATE LTD

600002 Tamilnadu Chennai

INDONESIA

PT. HIMALAYA EVEREST JAYA

Barat Jakarta 11710

IRAN

LEBON CO.

Tehran 15166

IRAN (Oil & Gas appl.)

EVANPALA Inc.

Tehran 1433643115

ISRAEL

ELRAM ENGINEERING &

ADVANCED TECHNOLOGIES 1992 LTD

Emek Hefer 38800

JAPAN

ASAHI SEIKO CO. LTD.

Osaka 593

KORFA

KIWON CORP. Pusan - South Korea

TAIWAN

FAIR POWER TECHNOLOGIES CO.LTD

105 Taipei

THAILAND

SYSTEM CORP. LTD.

Bangkok 10140

UAE - SAUDI ARABIA - KUWAIT - OMAN

BAHRAIN - YEMEN - QATAR NICO INTERNATIONAL U.A.E.

▲ TRANSFLUID SUBSIDIARIES REPRESENTATIVE OFFICE

SERVICE CENTER

Global web site: www.transfluid.eu

E-commerce web site: www.buy-transfluid.com

LOCAL DISTRIBUTOR